Definition: If A is a square matrix and there exists a matrix C such that $C A=I$, then C is called an inverse of A and A is said to be invertible.
note: The matrix inverse, when it exists, is unique. Since a matrix A has only one inverse, we refer to it as the inverse of A and denote it by A^{-1}.
note: Generally, $A B \neq B A$, but $A A^{-1}=I=A^{-1} A$.
note: If A is an invertible matrix, then the matrix equation $A X=$ B has the unique solution $X=A^{-1} B$.
note: The use of the matrix inverse to solve a linear system depends on two conditions:

1. The system must have the same number of equations as there are unknowns.
2. The coefficient matrix must be invertible.
