A diagonal matrix of order n with $A_{i i}=1, i=1,2, \cdots, n$ is called the identity matrix of order n.

A square matrix A is said to be an upper triangular matrix
if all entries below the main diagonal are zero $\left(A_{i j}=0\right.$ for $\left.i>j\right)$.
A square matrix A is said to be a lower triangular matrix if
all entries above the main diagonal are zero $\left(A_{i j}=0\right.$ for $\left.i<j\right)$.

Definition: If $A=\left[A_{i j}\right]$ and $B=\left[B_{i j}\right]$ are both $m \times n$ matrices, then the sum $A+B$ is the $m \times n$ matrix obtained by adding corresponding entries of A and B; that is, the $i j^{\text {th }}$ entry of $A+B$ is $(A+B)_{i j}=A_{i j}+B_{i j}$.

If the size of A is different from the size of B, then $A+B$ is not defined.

Remark: If A is an $m \times n$ matrix with real number entries, we can write $A \in M_{m, n}(\mathbb{R})$.

Properties. If $A, B, C, \mathbf{0}$ have the same size

1. $A+B=B+A$
commutative
2. $A+(B+C)=(A+B)+C$
associative
3. $A+\mathbf{0}=\mathbf{0}+A=A$
identity

Definition: If A is an $m \times n$ matrix and k is a real number, then,
by $k A$, we denote the $m \times n$ matrix obtained by multiplying each entry in A by k. This operation is called scalar multiplication and $k A$ is called a scalar multiple of A.
$\underline{\text { Properties. If } A, B \text { and } \mathbf{0} \text { have the same size, then, for any }}$ scalars k and ℓ we have

1. $k(A+B)=k A+k B$
2. $(k+\ell) A=k A+\ell A$
3. $k(\ell A)=(k \ell) A$
4. $0 A=\mathbf{0}$
5. $k \mathbf{0}=\mathbf{0}$.

Under the same conditions,

$$
\begin{gathered}
(A+B)^{T}=A^{T}+B^{T} \\
(k A)^{T}=k A^{T}
\end{gathered}
$$

Subtraction

If A is any matrix, then the scalar multiple $(-1) A$ is simply written $-A$ and called the negative of A.

$$
-A=(-1) A
$$

Definition: If A and B are the same size, then, by $A-B$, we
mean $A+(-B)$.

Definition: \quad Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.
Then the product $A B$ is the $m \times p$ matrix C, whose typical entry $C_{i j}$ (row i, column j), is given by

$$
C_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}=A_{i 1} B_{1 j}+A_{i 2} B_{2 j}+\cdots+A_{i n} B_{n j}
$$

If the number of columns of A is not equal to the number of rows of B, the product is not defined.

Properties Let A, B, C be matrices and k be a scalar. Assuming that the sizes are compatible so that all products and sums are defined, we have

1. $A(B C)=(A B) C$
associative
2. $A(B+C)=A B+A C$

$$
(A+B) C=A C+B C
$$

3. $k A B=k(A B)=(k A) B=A(k B)$
4. $(A B)^{T}=B^{T} A^{T}$
