Definition: A rectangular array of numbers consisting of m horizontal rows and n vertical columns

$$
\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
& \vdots & & \\
& & & \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right]
$$

is called an $m \times n$ matrix or a matrix of size $m \times n$.

For the entry $A_{i j}$, we call i the row subscript and j the column subscript.

Such a matrix is often denoted $\left[A_{i j}\right]$ or $\left[A_{i j}\right]_{m \times n}$.
A matrix with exactly 1 (one) row is called a row vector.

A matrix with exactly 1 (one) column is called a column vector.
Definition: Matrices $A=\left[A_{i j}\right]$ and $B=\left[B_{i j}\right]$ are equal if and only if they have the same size and $A_{i j}=B_{i j}$ for each i and j.

Definition: \quad The transpose of an $m \times n$ matrix A, denoted A^{T}, is the $n \times m$ matrix whose $i^{\text {th }}$ row is the $i^{\text {th }}$ column of A.

The matrix A is symmetric if $A^{T}=A$.

An $m \times n$ matrix whose entries are all 0 is called the $m \times n$ zero
matrix and is denoted $\mathbf{0}_{m \times n}$ or simply $\mathbf{0}$ if size is understood.

A matrix having the same number of columns as rows, say n rows and n columns, is called a square matrix of order n.

In a square matrix, $A=\left[A_{i j}\right]$, of order n, the entries

$$
A_{11}, A_{22}, A_{33}, A_{44}, \cdots A_{n n}
$$

lie on a diagonal from top left to bottom right and are said to constitute the main diagonal.

A square matrix A is called a diagonal matrix if all entries that are off the main diagonal are zero $\left(A_{i j}=0\right.$ for $\left.i \neq j\right)$.

