<u>Definition</u> : A rectangular array of numbers consisting of m horizontal rows and n vertical columns

is called an $m \times n$ matrix or a matrix of size $m \times n$.

For the entry A_{ij} , we call *i* the **row subscript** and *j* the **column** subscript.

Such a matrix is often denoted $[A_{ij}]$ or $[A_{ij}]_{m \times n}$.

A matrix with exactly 1 (one) row is called a **row vector**.

A matrix with exactly 1 (one) column is called a **column vector**. <u>Definition</u>: Matrices $A = [A_{ij}]$ and $B = [B_{ij}]$ are **equal** if and only if they have the same size and $A_{ij} = B_{ij}$ for each *i* and *j*. <u>Definition</u>: The **transpose** of an $m \times n$ matrix A, denoted A^T , is the $n \times m$ matrix whose i^{th} row is the i^{th} column of A.

The matrix A is **symmetric** if $A^T = A$.

An $m \times n$ matrix whose entries are all 0 is called the $m \times n$ **zero matrix** and is denoted $\mathbf{0}_{m \times n}$ or simply **0** if size is understood.

A matrix having the same number of columns as rows, say n rows and n columns, is called a **square matrix of order** n.

In a square matrix, $A = [A_{ij}]$, of order *n*, the entries

 $A_{11}, A_{22}, A_{33}, A_{44}, \cdots A_{nn}$

lie on a diagonal from top left to bottom right and are said to constitute the **main diagonal**.

A square matrix A is called a **diagonal matrix** if all entries that are off the main diagonal are zero $(A_{ij} = 0 \text{ for } i \neq j)$.