This is a collection of examples, prepared for recent lectures, but not used. In each case the topic(s) and lecture number is included.

Lecture 18
Chain Rule \& implicit differentiation
Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y by

$$
x^{3}+y^{3}+z^{3}+6 x y z=1 .
$$

We first differentiate w.r.t. x giving

$$
3 x^{2}+0+3 z^{2} \frac{\partial z}{\partial x}+6 y z+6 x y \frac{\partial z}{\partial x}=0 \Longrightarrow \frac{\partial z}{\partial x}=-\frac{x^{2}+2 y z}{z^{2}+2 x y}
$$

Then differentiate w.r.t. y giving

$$
0+3 y^{2}+3 z^{2} \frac{\partial z}{\partial y}+6 x z+6 x y \frac{\partial z}{\partial y}=0 \Longrightarrow \frac{\partial z}{\partial y}=-\frac{y^{2}+2 x z}{z^{2}+2 x y}
$$

We now work with a more general situation:
Suppose $F(x, y, z)=0$ defines z implicitly as a function $z=g(x, y)$. Hence $F(x, y, g(x, y))=0$, all $(x, y) \in$ domain g. If F and g have continuous partial derivatives, we can use the chain rule to differentiate $F(x, y, z)=0$ as follows

$$
\frac{\partial F}{\partial x} \frac{\partial x}{\partial x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

But $\frac{\partial}{\partial x}(x)=1$ and $\frac{\partial}{\partial x}(y)=0$ so

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

Hence

$$
\frac{\partial z}{\partial x}=\frac{-\partial F / \partial x}{\partial F / \partial z}=-\frac{F_{x}}{F_{z}} .
$$

Now differentiating w.r.t y we have

$$
\frac{\partial F}{\partial x} \frac{\partial x}{\partial y}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}=0
$$

So

$$
\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}=0
$$

Hence

$$
\frac{\partial z}{\partial y}=\frac{-\partial F / \partial y}{\partial F / \partial z}=-\frac{F_{y}}{F_{z}} .
$$

We now return to the example where we were asked to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ and put $F(x, y, z)=x^{3}+y^{3}+$ $z^{3}+6 x y z-1$. Now

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}=-\frac{3 x^{2}+6 y z}{3 z^{2}+6 x y}=-\left(\frac{x^{2}+2 y z}{z^{2}+2 x y}\right) .
$$

and

$$
\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}=-\frac{3 y^{2}+6 x z}{3 z^{2}+6 x y}=-\left(\frac{y^{2}+2 x z}{z^{2}+2 x y}\right)
$$

We note the results are the same as before.

Find the minimum cost of producing a rectangular box of volume $48 \mathrm{~m}^{2}$. The front and back cost $\$ 1 / \mathrm{m}^{2}$, the top and bottom cost $\$ 2 / m^{2}$ and the 2 sides cost $\$ 3 / m^{2}$.

Let the length of the front be x, the length of a side be y and the height be h (as illustrated above). Since the volume $V=x y h=48$ we have $h=\frac{48}{x y}($ clearly, $x, y \neq 0)$.
The cost function is $c(x, y)=2(2 x y)+1(2 x h)+3(2 y h)$

$$
\begin{aligned}
& =4 x y+2 x\left(\frac{48}{x y}\right)+6 y\left(\frac{48}{x y}\right) \\
& =4 x y+\frac{96}{y}+\frac{288}{x}
\end{aligned}
$$

Taking the partials and equating to 0 we have
$c_{x}=4 y-\frac{288}{x^{2}}=0 \Longrightarrow y-\frac{72}{x^{2}}=0 \Longrightarrow x y=\frac{72}{x}$
$c_{y}=4 x-\frac{96}{y^{2}}=0 \Longrightarrow x-\frac{24}{y^{2}}=0 \Longrightarrow x y=\frac{24}{y}$.
Hence we have $\frac{72}{x}=\frac{24}{y} \Longrightarrow 72 y=24 x \Longrightarrow x=3 y$.
Now substituting into $x=\frac{24}{y^{2}}$ we have $3 y-\frac{24}{y^{2}}=0 \Longrightarrow 3 y^{3}-24=0 \Longrightarrow y^{3}=8 \Longrightarrow y=2 \Longrightarrow x=$ $6 \Longrightarrow h=\frac{48}{(6)(2)}=4$.
The Hessian matrix is $A=H f=\left[\begin{array}{cc}c_{x x} & c_{x y} \\ c_{x y} & c_{y y}\end{array}\right]=\left[\begin{array}{cc}\frac{576}{x^{3}} & 4 \\ 4 & \frac{192}{y^{3}}\end{array}\right]$.
At the critical point, $(6,2), A=\left[\begin{array}{cc}\frac{8}{3} & 4 \\ 4 & 24\end{array}\right]$ so $\operatorname{det} A=48>0$ and $\operatorname{det} A_{1}=\frac{8}{3}>0 \Longrightarrow$ we have a relative minimum. Since there must be such a box, we have found it. The optimum box is $6 m \times 2 m \times 4 m$ and costs $\$ 144.00$.

A retailer has discovered thet the number of TVs sold in a week is given by

$$
\frac{5 x}{2+x}+\frac{2 y}{5+y}
$$

where x is the expenditure on newspaper advertising and y is the expenditure on radio advertising. The profit per sale is $\$ 250$ and the total profit is

$$
\Pi=\Pi(x, y)=250\left(\frac{5 x}{2+x}+\frac{2 y}{5+y}\right)-x-y
$$

Find the advertising expenditure that gives the maximum profit.

Now $\Pi_{x}=\frac{2500}{(2+x)^{2}}-1=0$

$$
\Pi_{y}=\frac{2500}{(5+y)^{2}}-1=0
$$

The first gives $2500=(2+x)^{2}=4+4 x+x^{2} \Longrightarrow x^{2}+4 x-2496=0 \Longrightarrow(x+52)(x-48)=0$
The second gives $2500=(5+y)^{2}=25+10 y+y^{2} \Longrightarrow y^{2}+10 y-2475=0 \Longrightarrow(y-45)(y+55)=0$
Since $x, y \geq 0$, the only critical point is $(48,45)$.
The Hessian matrix is $A=H f=\left[\begin{array}{cc}\Pi_{x x} & \Pi_{x y} \\ \Pi_{x y} & \Pi_{y y}\end{array}\right]=\left[\begin{array}{cc}-\frac{5000}{(x+2)^{3}} & 0 \\ 0 & -\frac{5000}{(y+5)^{3}}\end{array}\right]$.
At $(x, y)=(48,45), A=\left[\begin{array}{cc}-\frac{5000}{(48+2)^{3}} & 0 \\ 0 & -\frac{5000}{(45+5)^{3}}\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{25} & 0 \\ 0 & -\frac{1}{25}\end{array}\right]$.
Hence $\operatorname{det} A=\left(-\frac{1}{25}\right)\left(-\frac{1}{25}\right)=\frac{1}{625} \neq 0$ and $\operatorname{det} A_{1}=-\frac{1}{25}<0, \operatorname{det} A_{2}=\operatorname{det} A=\frac{1}{625}>0$. Therefore $(48,45)$ gives a relative maximum.

The maximal profit occurs when $\$ 48$ is spent on newspaper advertising and $\$ 45$ is spent on radio advertising.

A company has the possibility of discriminating between two markets where the demand functions are

$$
\begin{aligned}
& q_{1}=21-\frac{1}{10} p_{1} \\
& q_{2}=50-\frac{2}{5} p_{2}
\end{aligned}
$$

and the total cost function is

$$
c=2000+10 q
$$

$q=q_{1}+q_{2}$. Find the amount to charge to maximize profit
(1) with price discrimination.
(2) without price discrimination, i.e., $p_{1}=p_{2}$.
(1) Rewriting the demand functions we have

$$
\begin{aligned}
& p_{1}=210-10 q_{1} \\
& p_{2}=125-\frac{5}{2} q_{2}
\end{aligned}
$$

The total cost is $c=2000+10 q_{1}+10 q_{2}$ and the profit Π is

$$
\begin{aligned}
\Pi & =p_{1} q_{1}+p_{2} q_{2}-c \\
& =\left(210-10 q_{1}\right) q_{1}+\left(125-\frac{5}{2} q_{2}\right) q_{2}-\left(2000+10 q_{1}+10 q_{2}\right) \\
& =200 q_{1}-10 q_{1}^{2}+115 q_{2}-\frac{5}{2} q_{2}^{2}-2000
\end{aligned}
$$

Now $\Pi_{q_{1}}=200-20 q_{1}=0 \quad \Longrightarrow q_{1}=10$

$$
\Pi_{q_{2}}=115-5 q_{2}=0 \quad \Longrightarrow \quad q_{2}=23
$$

The Hessian matrix is $A=\left[\begin{array}{rr}-20 & 0 \\ 0 & -5\end{array}\right]$ so $\operatorname{det} A_{1}=-20<0$ and $\operatorname{det} A_{2}=\operatorname{det} A=100>0 \Longrightarrow$ relative maximum.
The prices that give maximum profit are $p_{1}=210-10(10)=110, p_{2}=125-\frac{5}{2}(23)=67.5$ and the maximum profit is

$$
200(10)-10(10)^{2}+115(23)-\frac{5}{2}(23)^{2}-2000=322.50
$$

(2) This time we need to use Lagrange.

Since $p_{1}=p_{2}, 210-10 q_{1}=125-2.5 q_{2} \Longrightarrow 2.5 q_{2}-10 q_{1}=-85$ which becomes our constraint. We now need to maximize profit subject to this constraint.

We define the Lagrangian,

$$
F\left(q_{1}, q_{2}, \lambda\right)=200 q_{1}-10 q_{1}^{2}+115 q_{2}-\frac{5}{2} q_{2}^{2}-2000-\lambda\left(10 q_{1}-2.5 q_{2}-85\right)
$$

Now $F_{q_{1}}=200-20 q_{1}-10 \lambda=0 \quad \Longrightarrow q_{1}=10-\frac{1}{2} \lambda$

$$
\begin{aligned}
& F_{q_{2}}=115-5 q_{2}+2.5 \lambda=0 \quad \Longrightarrow q_{2}=23+\frac{1}{2} \lambda \\
& F_{\lambda}=-\left(10 q_{1}-2.5 q_{2}-85\right)=0
\end{aligned}
$$

Substituting for q_{1} and q_{2} in the third we have

$$
10\left(10-\frac{1}{2} \lambda\right)-2.5\left(23+\frac{1}{2} \lambda\right)-85=0 \quad \Longrightarrow \lambda=-6.8
$$

Hence $q_{1}=10-\frac{1}{2}(-6.8)=13.4 \quad \Longrightarrow p_{1}=210-10(13.4)=76$

$$
q_{2}=23+\frac{1}{2}(-6.8)=19.6 \quad \Longrightarrow p_{2}=125-\frac{5}{2}(19.6)=76
$$

Now the maximum profit is

$$
\Pi=(76)(13.4+19.6)-(2000+10(13.4)+10(19.6)=2508-2330=178 .
$$

If the company practices price discrimination the profit is $\$ 322.50$, while without price discrimination the profit is only $\$ 178$. It is more profitable to discriminate between the markets.

Find the (constrained) critical points of

$$
f(x, y, z)=x z+y z
$$

subject to $x^{2}+z^{2}=2$ and $y z=2$.

To solve, we put $g_{1}(x, y, z)=x^{2}+z^{2}-2=0$ and $g_{2}(x, y, z)=y z-2=0$ and define

$$
F\left(x, y, z, \lambda_{1}, \lambda_{2}\right)=x z+y z-\lambda_{1}\left(x^{2}+z^{2}-2\right)-\lambda_{2}(y z-2)
$$

Now $F_{x}=z-2 \lambda_{1} x \quad=0$

$$
\begin{array}{ll}
F_{y}=z-\lambda_{2} z & =0 \\
F_{z}=x+y-2 \lambda_{1} z-\lambda_{2} y & =0 \\
F_{\lambda_{1}}=-\left(x^{2}+z^{2}-2\right) & =0 \\
F_{\lambda_{2}}=-(y z-2) & =0
\end{array}
$$

From the second, $\lambda_{2}=1 \quad(z=0$ contradicts the fifth equation $)$
From the first, $\lambda_{1}=\frac{z}{2 x} \quad(x=0 \Longrightarrow z=0)$
The third becomes $x+y-2\left(\frac{z}{2 x}\right) z-y=0 \Longrightarrow x^{2}=z^{2}$
The fourth becomes $2 x^{2}=2 \Longrightarrow x^{2}=1 \Longrightarrow x= \pm 1 \Longrightarrow z= \pm 1$
Finally, the fifth gives $y=\frac{2}{z}= \pm 2$.
Hence we have 4 (constrained) critical points: $(1,2,1),(1,-2,-1),(-1,2,1)$ and $(-1,-2,-1)$.

You have to order supplies for an office. This week you need 3 products: A, B and C to be ordered in amounts x, y. and z, respectively. The total usefullness is modeled by

$$
U(x, y, z)=x y+x y z
$$

If A costs $\$ 3, B$ costs $\$ 2$, and C costs $\$ 1$ per unit and you have a budget of $\$ 899$, how much of each should you order?

We need to maximize $U(x, y, z)=x y+x y z$ subject to the constraint $3 x+2 y+z=899$. To do this we put

$$
F(x, y, z, \lambda)=x y+x y z-\lambda(3 x+2 y+z-899)
$$

Now $F_{x}=y+y z-3 \lambda=0 \quad \Longrightarrow \lambda=y\left(\frac{z+1}{3}\right)$

$$
\begin{array}{ll}
F_{y}=x+x z-2 \lambda=0 & \Longrightarrow \lambda=x\left(\frac{z+1}{2}\right) \\
F_{z}=x y-\lambda=0 & \Longrightarrow \lambda=x y
\end{array}
$$

$$
F_{\lambda}=-(3 x+2 y+z-899)=0
$$

Equating the second and third, we have $x\left(\frac{z+1}{2}\right)=x y \Longrightarrow y=\frac{z+1}{2} \quad(x \neq 0$ or $U=0)$. Substituting into the first, we have $\lambda=\left(\frac{z+1}{2}\right)\left(\frac{z+1}{3}\right)=\frac{(z+1)^{2}}{6}$. Then substituting into the last, we have $3 x+$ $2\left(\frac{z+1}{2}\right)+z=899 \Longrightarrow 3 x=898-2 z \Longrightarrow x=\frac{898-2 z}{3}$. Now $x y=\lambda$ becomes $\left(\frac{898-2 z}{3}\right)\left(\frac{z+1}{2}\right)=$ $\frac{(z+1)^{2}}{6} \Longrightarrow z=-1$ (not possible) or $\frac{z+1}{3}=\frac{898-2 z}{3} \Longrightarrow z+1=898-2 z \Longrightarrow 3 z=897 \Longrightarrow z=$ $299 \Longrightarrow y=\frac{300}{2}=150 \Longrightarrow x=\frac{898-598}{3}=100$.
Hence the most useful order is 100 of $A, 150$ of B and 299 of C.
As with many problems on this material, we are assuming that the critical points give the extrema.

A company has production function $f(x, y, z)=50 x^{2 / 5} y^{1 / 5} z^{1 / 5}$ which requires 3 imputs x, y, z, where x costs $\$ 80$ per unit, y costs $\$ 12$ per unit and z costs $\$ 10$ per unit. Find the number of units of each required to maximize production within a total budget of $\$ 24,000$. What is the maximum production?

We need to maximize $f(x, y, z)=50 x^{2 / 5} y^{1 / 5} z^{1 / 5}$ subject to the constraint $80 x+12 y+10 z=24000$. We will use Lagrange multipliers: Define

$$
F(x, y, z, \lambda)=50 x^{2 / 5} y^{1 / 5} z^{1 / 5}-\lambda(80 x+12 y+10 z-24000)
$$

Now $F_{x}=20 x^{-3 / 5} y^{1 / 5} z^{1 / 5}-80 \lambda=0 \quad \Longrightarrow \lambda=\frac{1}{4} x^{-3 / 5} y^{1 / 5} z^{1 / 5}$

$$
F_{y}=10 x^{2 / 5} y^{-4 / 5} z^{1 / 5}-12 \lambda=0 \quad \Longrightarrow \lambda=\frac{5}{6} x^{2 / 5} y^{-4 / 5} z^{1 / 5}
$$

$$
F_{z}=10 x^{2 / 5} y^{1 / 5} z^{-4 / 5}-10 \lambda=0 \quad \Longrightarrow \lambda=x^{2 / 5} y^{1 / 5} z^{-4 / 5}
$$

$$
F_{\lambda}=-(80 x+12 y+10 z-24000)=0
$$

Eliminating z from the first two, we have $\frac{1}{4} x^{-3 / 5} y^{1 / 5}=\frac{5}{6} x^{2 / 5} y^{-4 / 5} \Longrightarrow x=\frac{3}{10} y$.
Eliminating x from the second and third, we have $\frac{5}{6} y^{-4 / 5} z^{1 / 5}=y^{1 / 5} z^{-4 / 5} \Longrightarrow z=\frac{6}{5} y$.
Substituting into the fourth, we have

$$
24000=80\left(\frac{3}{10} y\right)+12 y+10\left(\frac{6}{5} y\right)=24 y+12 y+12 y=48 y \Longrightarrow y=500
$$

Hence $x=\frac{3}{10}(500)=150$ and $z=\frac{6}{5}(500)=600$.
Since we are assuming that extrema are attainable at critical points, the production is maximized within budget by using 150 units of $x, 500$ units of y and 600 units of z. The maximum production is $f(150,500,600)=$ 4622 units.

