Definition: determinant

- (i) The determinant of a 1 by 1 matrix $\begin{bmatrix} a \end{bmatrix}$ is a.
- (ii) Suppose a definition is provided for a n-1 by n-1 determinant.

Define

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det \tilde{A}_{1j}$$

where \tilde{A}_{ij} is the matrix obtained from A by deleting the i^{th} row and j^{th} column.

notes:

The matrix \tilde{A}_{ij} is sometimes called the ij^{th} minor matrix of A. Think of this approach as the definition by expansion along the first row or expansion by minors along the first row.

Properties of Determinants

Let A be an $n \times n$ matrix.

- ▶ If A has a row or column of zeros, $\det A = 0$.
- ► If A is a triangular matrix, det A is the product of the elements on the main diagonal.

► det I = 1.

- $\blacktriangleright \det A = \det A^T.$
- ▶ Interchanging any two rows (or columns) multiplies the determinant by -1.

Since det $A = \det A^T$, I will state the remaining properties only in terms of rows.

2

- ▲ ► If a row of A is multiplied by a constant k, the determinant of the resulting matrix is k det A.
 - ▶ NOTE, $det(k A) = k^n det A$.
- ▲ ► Let A, B, C be $n \times n$ matrices that are identical except that the i^{th} row of A is the sum of the i^{th} rows of B and C then $\det A = \det B + \det C$.
 - ▶ BUT, $\det A \neq \det B + \det C$ in general.
 - \blacktriangleright This property + previous property \Longrightarrow

determinant is linear in each row.

- **↓** ► If two distinct rows are identical then det A = 0.
 - If two distinct rows are proportional then det A = 0.
- $\clubsuit \blacktriangleright$ Adding a multiple of one row to another row does not change

the value of the determinant.

 $\blacktriangleright \det(A B) = (\det A) (\det B).$

4 The determinant of a matrix consists of sums and products of its entries. If the entries are polynomials in some variable, say x, the the determinant is a polynomial in x. Often it is of interest to know the values of x that make the determinant zero.

- 4 A square matrix is invertible if and only if det $A \neq 0$.
- 5 The homogeneous linear system AX = 0 has the unique solu-

4

tion $X = \mathbf{0}$ if and only if det $A \neq 0$.

3

Let $A = [a_{ij}]$ be an $n \times n$ matrix. We define the **cofactor** of a_{ij} denoted c_{ij} by

$$c_{ij} = (-1)^{i+j} \det \tilde{A}_{ij} .$$

The $n \times n$ matrix $C = [c_{ij}]$ is called the **cofactor matrix** of A.

(Recall that \tilde{A}_{ij} is the matrix obtained from A by deleting the i^{th} row and j^{th} column and is sometimes called the ij^{th} minor matrix of A. det \tilde{A}_{ij} can be called the ij^{th} minor of A or the minor of the element a_{ij} of A.)

In this context, a cofactor is sometimes called a signed minor.

<u>Note:</u> c_{ij} is a scalar (real number) but \tilde{A}_{ij} is an $(n-1) \times (n-1)$ matrix.

We can now restate the definition of determinant in terms of cofactors.

(i) The determinant of a 1 by 1 matrix $\begin{bmatrix} a \end{bmatrix}$ is a.

(ii) Suppose a definition is provided for a n-1 by n-1 determinant. Define

$$\det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ & & & & \\ & & & & \\ & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \sum_{j=1}^{n} a_{1j} c_{1j} = a_{11} c_{11} + a_{12} c_{12} + \cdots + a_{1n} c_{1n}$$

where c_{ij} is the cofactor of a_{ij} .

The transpose of the cofactor matrix C of A is called the **classical**

adjoint of A and denoted by $\operatorname{adj} A$; i.e., $\operatorname{adj} A = C^T$.

<u>Theorem:</u> If A is any square matrix, then

$$A(\operatorname{adj} A) = (\det A) I = (\operatorname{adj} A) A.$$

In particular, if det $A \neq 0$, the inverse of A is given by

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

7

where $\operatorname{adj} A = C^T$, C being the cofactor matrix of A.

 $\underline{\text{Cramer's Rule}} \qquad \text{If } A \text{ is an invertible } n \times n \text{ matrix, the solution to}$ the system

$$AX = B$$

of n equations in the variables x_1, x_2, \cdots, x_n is given by

$$x_1 = \frac{\det A_1}{\det A}, \quad x_2 = \frac{\det A_2}{\det A}, \quad \cdots, \quad x_n = \frac{\det A_n}{\det A}$$

where, for each k, A_k is the matrix obtained from A by replacing the

 k^{th} column of A by B.