University of Toronto Scarborough Department of Computer & Mathematical Sciences

Term Test

MATA33H3 – Calculus for Management II

Examiners: E. Moore T. Pham P. Selick Date: February 26, 2010 Duration: 110 minutes

- 1. [6 points] Let $A = \begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 0 & 2 \end{bmatrix}$ and $D = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$.
 - (a) Evaluate $D^{-1} + C^T B$.
 - (b) Find det(AB + AC).
 - (c) Find all possible diagonal matrices E which satisfy $E^2 = D$.
- 2. [6 points] Let A, B and C be 3×3 matrices with det A = 1, det B = -2 and det C = 3. Evaluate the following
 - (a) det $((2A)B^2)$
 - (b) det $\left((\frac{1}{2} B)^{-1} C \right)$
 - (c) det $(A B C)^T$.

3. [5 points] Let $A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 0 \\ 3 & 0 & 3 \end{bmatrix}$. Find all real numbers t such that the matrix (A - tI) is **not** invertible.

- 4. **[18 points]** Find the maximum and minimum values of the function Z = 3x + 4y subject to the constraints: $5x + 2y \le 40$, $3x + 3y \le 30$, $x + 2y \le 16$ and $x, y \ge 0$. (For full marks, your solution must include all of your calculations and some justification, along with a neat, labeled diagram of the feasible region clearly showing where Z is optimized.)
- 5. [12 points] Suppose a TV dealer has stores A and B and warehouses C and D. The cost of shipping a TV is \$18 from C to A, \$9 from C to B, \$24 from D to A and \$15 from D to B. Suppose that store A orders 25 TV sets and store B orders 30 TV sets. Suppose also that warehouse C has 45 TV sets and warehouse D has 40 TV sets available. Find the best way to fill these two orders so as to minimize cost, and find the minimum cost.

6. **[18 points]**

(a) Let
$$A = \begin{bmatrix} 1 & -3 & 2 & 0 \\ -2 & 6 & -3 & 1 \\ 2 & 0 & 2 & -1 \\ -1 & 2 & 0 & 3 \end{bmatrix}$$
. Use row reduction to determine if A is invertible.

It it is, find A^{-1} . If it is not, explain why. Show all your work and indicate the row operations used.

(b) Solve the linear system:

7. **[15 points]** Use row reduction to solve the linear system:

x	+	y	+	2z	—	w	=	4	
		3y	—	z	+	4w	=	2	
x	+	2y	—	3z	+	5w	=	0	•
x	+	y	+	z	+	w	=	-3	

Show all your work and indicate the row operations used.

- 8. **[10 points]** Let $A = \begin{bmatrix} 2 & 0 & -2 \\ 3 & 1 & 2 \\ 1 & 0 & -3 \end{bmatrix}$.
 - (a) Without attempting to find the inverse, determine if A is invertible.
 - (b) If A is invertible, use the method of cofactors to find A^{-1} .
- 9. **[10 points]** Use Cramer's Rule to solve, if possible, the linear system, given in matrix form by

$$\begin{bmatrix} 3 & -1 & 0 \\ 0 & 1 & -2 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$