University of Toronto Scarborough Department of Computer \& Mathematical Sciences

Term Test
MATA33H3 - Calculus for Management II

Examiners: E. Moore
Date: February 26, 2010
T. Pham

Duration: 110 minutes
P. Selick

1. [6 points] Let $A=\left[\begin{array}{ll}-1 & 2 \\ -2 & 3\end{array}\right], B=\left[\begin{array}{rr}1 & -1 \\ 2 & 0\end{array}\right], C=\left[\begin{array}{ll}0 & 1 \\ 0 & 2\end{array}\right]$ and $D=\left[\begin{array}{ll}4 & 0 \\ 0 & 1\end{array}\right]$.
(a) Evaluate $D^{-1}+C^{T} B$.
(b) Find $\operatorname{det}(A B+A C)$.
(c) Find all possible diagonal matrices E which satisfy $E^{2}=D$.
2. [6 points] Let A, B and C be 3×3 matrices with $\operatorname{det} A=1$, $\operatorname{det} B=-2$ and $\operatorname{det} C=3$. Evaluate the following
(a) $\operatorname{det}\left((2 A) B^{2}\right)$
(b) $\operatorname{det}\left(\left(\frac{1}{2} B\right)^{-1} C\right)$
(c) $\operatorname{det}(A B C)^{T}$.
3. [5 points] Let $A=\left[\begin{array}{lll}2 & 0 & 2 \\ 0 & 1 & 0 \\ 3 & 0 & 3\end{array}\right]$. Find all real numbers t such that the matrix $(A-t I)$ is not invertible.
4. [18 points] Find the maximum and minimum values of the function $Z=3 x+4 y$ subject to the constraints: $5 x+2 y \leq 40,3 x+3 y \leq 30, x+2 y \leq 16$ and $x, y \geq 0$.
(For full marks, your solution must include all of your calculations and some justification, along with a neat, labeled diagram of the feasible region clearly showing where Z is optimized.)
5. [12 points] Suppose a TV dealer has stores A and B and warehouses C and D. The cost of shipping a TV is $\$ 18$ from C to $A, \$ 9$ from C to $B, \$ 24$ from D to A and $\$ 15$ from D to B. Suppose that store A orders 25 TV sets and store B orders 30 TV sets. Suppose also that warehouse C has 45 TV sets and warehouse D has 40 TV sets available. Find the best way to fill these two orders so as to minimize cost, and find the minimum cost.
6. [18 points]
(a) Let $A=\left[\begin{array}{rrrr}1 & -3 & 2 & 0 \\ -2 & 6 & -3 & 1 \\ 2 & 0 & 2 & -1 \\ -1 & 2 & 0 & 3\end{array}\right]$. Use row reduction to determine if A is invertible. It it is, find A^{-1}. If it is not, explain why. Show all your work and indicate the row operations used.
(b) Solve the linear system:

$$
\begin{aligned}
x-3 y+2 z & =1 \\
-2 x+6 y-3 z+w & =0 \\
2 x+2 z-w & =1 \\
-x+2 y+3 w & =0
\end{aligned}
$$

7. [15 points] Use row reduction to solve the linear system:

$$
\begin{aligned}
x+y+2 z-w & =4 \\
3 y-z+4 w & =2 \\
x+2 y-3 z+5 w & =0 \\
x+y+z+w & =-3
\end{aligned} .
$$

Show all your work and indicate the row operations used.
8. [10 points] Let $A=\left[\begin{array}{rrr}2 & 0 & -2 \\ 3 & 1 & 2 \\ 1 & 0 & -3\end{array}\right]$.
(a) Without attempting to find the inverse, determine if A is invertible.
(b) If A is invertible, use the method of cofactors to find A^{-1}.
9. [10 points] Use Cramer's Rule to solve, if possible, the linear system, given in matrix form by

$$
\left[\begin{array}{rrr}
3 & -1 & 0 \\
0 & 1 & -2 \\
-2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

