*** Sorry...No Solutions are Provided***

University of Toronto at Scarborough Department of Computer and Mathematical Sciences

FINAL EXAMINATION

MATA33S - Calculus for Management II

Examiners: P. Glynn-Adey	Date: April 21, 2017
R. Grinnell	Time: $9:00 \text{ am}$
	Duration: 170 minutes
Last Name (PRINT BIG)	
Civen Nerro(a) (DDINT DIC)	
Given Name(s) (PRINT DIG)	

Signature _

Read these instructions

1. This examination has 12 pages. Check this number at the beginning of the exam.

Student Number (PRINT BIG) _____

- 2. Put your solutions, answers, and rough work in the answer spaces provided for each question. Show all of your work. If you need extra space, use the back of a page or blank page 12 and clearly indicate your continuing work.
- 3. <u>The following are forbidden at your workspace or with you during any part of the exam</u>: calculators, laptop computers, smart phones, cell phones, smart watches, iPods/iPads, other electronic transmission/receiving devices, extra paper, notes, textbooks, opaque pencil/pen cases, food, drink boxes/bottles with labels, backpacks, and coats/outdoor

wear. You cannot wear a hat or head cover, except for reasons of religion/creed.

4. You may write your exam in pencil, pen, or other ink. You may have an eraser or correction fluid and a ruler at your workspace.

1	2	3	4	5	6	7	8	9	10	TOTAL
17	14	17	16	15	14	15	11	14	17	150

Do not write anything in these boxes

Instructions: Put your solutions, answers, and rough work in the answer space provided. Show all of your work. Full points are awarded only if your solutions/answers are correct, complete, and sufficiently display appropriate, relevant concepts from MATA33S.

- 1. In each part of this question let $f(x,y) = \frac{\sqrt{x}}{\sqrt{y^2 x + 1}}$.
 - (a) Let D represent the domain of the function f. State D using set-bracket notation (i.e. $D = \{(x, y) | \dots\}$) and appropriate inequalities. Carefully sketch D and lightly shade all points that are **not in** D. [7 points]

(b) Find the function x = h(y) that gives the level curve of f(x, y) = 1. [4 points]

(c) Let
$$z = \left(f(x,y)\right)^2$$
. Show that $\frac{\partial z}{\partial x} = (y^2 + 1)\left(\frac{z}{x}\right)^2$. [6 points]

- 2. The two parts of this question are independent of each other.
 - (a) Let x and y represent numbers of units of products X and Y sold, respectively. Assume the joint-revenue function is given by $R(x, y) = \frac{500xy}{2x + 3y}$. Show that when equal amounts of X and Y are sold, the sum of the marginal revenue functions is a constant.

[7 points]

(b) Let a, b < -1 and c < b. Assume (a, b, c) be a critical point of a MATA33 function f(x, y, z). Assume the Hessian matrix is $H(f(a, b, c)) = \begin{pmatrix} ab & b & 0 \\ a & ab & 0 \\ 0 & 0 & -c^3 \end{pmatrix}$.

Determine whether f has a relative maximum, relative minimum, or saddle point at the critical point (a, b, c). [7 points]

- 3. The two parts of this question are independent of each other.
 - (a) Let $w = 2x^2\sqrt{y+5}$ where $x = 2r^3 + 4s^2$ and $y = (r+6)^{2/3}s$. Use the Chain Rule to evaluate the partial derivative $\frac{\partial w}{\partial r}$ when s = 1 and r = 2. Express your answer as a simplified rational number. [9 points]

(b) Assume the equation $4z^3 + x^2z^2 = 4xy$ defines z implicitly as a function of variables x and y. Show that the point (x, y, z) = (4, 6, 2) satisfies this equation and then evaluate $\frac{\partial z}{\partial x}$ at this point. Express your answer as a simplified rational number. [8 points]

4. Find all critical points of the function $f(x, y, z) = x^3 + x^2 + y^2 + z^2 - xy + xz$ and classify each point as a relative maximum, relative minimum, or a saddle point. [16 points]

- 5. In all parts of this question assume A and C are 5×5 matrices such that the entries in A are integers and det(A) = -1 and det(C) = 2.
 - (a) Find the following: (i) $det(-2A^2C)$ and (ii) $det\left(det(C^{-1})C^T\right)$ [3 + 3 points]

(b) Let P be the matrix that is obtained by multiplying Row 1 of C by 2 and Row 4 of C by -3. Find det(P). [3 points]

(c) Assume B is a 5×1 matrix whose entries are integers. Show that the matrix equation AX = B has a unique solution and that this solution has only integer entries.

[6 points]

6. Your company builds above ground swimming pools. A customer wants a pool with a flat circular bottom. The material for the bottom costs $1/m^2$ and the material for the re-enforced sides costs $5/m^2$. Use the Lagrange Multiplier method to find the radius and height (r, h) which minimizes the total material cost of a pool with volume of $100\pi m^3$. You may assume the total material cost has a minimum value and that the Lagrange Multiplier method yields the minimizing value for r and h. [14 points]

(If you solve this problem using any method other than Lagrange Multipliers, your solution will earn at most 4 points).

- 7. The parts of this question are independent of each other.
 - (a) Find the values of the constants a, b, and c so that the surface $z = x^2 + axy + by^2 + c$ contains the points (1, 1, 11), (2, 1, 16), and (1, 2, 22). [7 points]

(b) Recall that $F = \left(1 + \frac{r}{x}\right)^x - 1$ is the effective rate formula where r > 0 is the annual percentage rate and x > 0 is the number of annual compounds of interest. Show that $F_x = (F+1) \left[\frac{\ln(F+1)}{x} - \frac{r}{x+r} \right]$. [8 points] 8. Let $f(x,y) = xy + \frac{27}{x} + \frac{8}{y}$. This function f has a unique critical point. Find this critical point and determine whether it gives a local maximum, minimum, or saddle point.

[11 points]

9. (a) Evaluate $\int_{1}^{2} \int_{0}^{4} (x+2y) \, dx \, dy$.

[5 points]

(b) Let T be the triangle with vertices (0,0), (0,2), and (2,2). Evaluate $\int \int_T y^2 e^{xy} dA$. (Hint: sketch the triangle and choose an appropriate order of integration.) [9 points] 10. A company has 4 locations L_1 , L_2 , L_3 , L_4 and sells 8 of the same products X_1, X_2, \ldots, X_8 at each location. Let $P = [P_{i,j}]$ be the **profit matrix** where

 $P_{i,j}$ = the company's profit (in \$1,000's) when exactly one unit of product X_j is sold at location L_i .

- (a) If the company's profit from selling 7 units of product X_2 at location L_4 is \$84,000, what is the value of the entry $P_{4,2}$? [3 points]
- (b) State the matrix Q such that A = QP where $A = [A_{1,j}]$ and $A_{1,j}$ is the company's average profit in dollars from selling exactly one unit of product X_j at all of the 4 locations of the company. [4 points]

(c) State the matrices E and C so that the single entry in the matrix product EPC^T is the total profit in dollars from selling exactly j units of product X_j at all of the 4 locations of the company. [3 + 3 points]

(d) State the matrices E and F such that the single entry in the matrix product EPF is the sum of all entries in the matrix P. [4 points]

(This page is intentionally left blank)