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Instructions: Put your solutions, answers, and rough work in the answer space provided.
Show all of your work. Full points are awarded only if your solutions/answers are correct, complete,
and sufficiently display appropriate, relevant concepts from MATA33S.

1. In each part of this question let f(x, y) =

√
x√

y2 − x+ 1
.

(a) Let D represent the domain of the function f . State D using set-bracket notation
(i.e. D = { (x, y) | . . .}) and appropriate inequalities. Carefully sketch D and lightly
shade all points that are not in D. [7 points]

(b) Find the function x = h(y) that gives the level curve of f(x, y) = 1. [4 points]

(c) Let z =
(
f(x, y)

)2

. Show that
∂z

∂x
= (y2 + 1)

(
z

x

)2

. [6 points]
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2. The two parts of this question are independent of each other.

(a) Let x and y represent numbers of units of products X and Y sold, respectively. Assume

the joint-revenue function is given by R(x, y) =
500xy

2x+ 3y
. Show that when equal amounts

of X and Y are sold, the sum of the marginal revenue functions is a constant.

[7 points]

(b) Let a, b < −1 and c < b. Assume (a, b, c) be a critical point of a MATA33 function

f(x, y, z). Assume the Hessian matrix is H
(
f(a, b, c)

)
=

 ab b 0
a ab 0
0 0 −c3

 .

Determine whether f has a relative maximum, relative minimum, or saddle point at the
critical point (a, b, c). [7 points]
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3. The two parts of this question are independent of each other.

(a) Let w = 2x2
√
y + 5 where x = 2r3 + 4s2 and y = (r + 6)2/3s . Use the Chain Rule

to evaluate the partial derivative
∂w

∂r
when s = 1 and r = 2. Express your answer as a

simplified rational number. [9 points]

(b) Assume the equation 4z3 + x2z2 = 4xy defines z implicitly as a function of variables x
and y. Show that the point (x, y, z) = (4, 6, 2) satisfies this equation and then evaluate
∂z

∂x
at this point. Express your answer as a simplified rational number. [8 points]
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4. Find all critical points of the function f(x, y, z) = x3 + x2 + y2 + z2 − xy + xz and classify
each point as a relative maximum, relative minimum, or a saddle point. [16 points]
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5. In all parts of this question assume A and C are 5× 5 matrices such that the entries in A are
integers and det(A) = −1 and det(C) = 2.

(a) Find the following: (i) det(−2A2C) and (ii) det
(
det(C−1)CT

)
[3 + 3 points]

(b) Let P be the matrix that is obtained by multiplying Row 1 of C by 2 and Row 4 of C
by −3. Find det(P ). [3 points]

(c) Assume B is a 5 × 1 matrix whose entries are integers. Show that the matrix equation
AX = B has a unique solution and that this solution has only integer entries.

[6 points]
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6. Your company builds above ground swimming pools. A customer wants a pool with a flat
circular bottom. The material for the bottom costs $1/m2 and the material for the re-enforced
sides costs $5/m2. Use the Lagrange Multiplier method to find the radius and height
(r, h) which minimizes the total material cost of a pool with volume of 100π m3. You may
assume the total material cost has a minimum value and that the Lagrange Multiplier method
yields the minimizing value for r and h. [14 points]

(If you solve this problem using any method other than Lagrange Multipliers,
your solution will earn at most 4 points).
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7. The parts of this question are independent of each other.

(a) Find the values of the constants a, b, and c so that the surface z = x2 + axy + by2 + c
contains the points (1, 1, 11), (2, 1, 16), and (1, 2, 22). [7 points]

(b) Recall that F =
(
1 +

r

x

)x

− 1 is the effective rate formula where r > 0 is the annual

percentage rate and x > 0 is the number of annual compounds of interest.

Show that Fx = (F + 1)
[
ln(F + 1)

x
− r

x+ r

]
. [8 points]
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8. Let f(x, y) = xy +
27

x
+

8

y
. This function f has a unique critical point. Find this critical

point and determine whether it gives a local maximum, minimum, or saddle point.

[11 points]
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9. (a) Evaluate
∫ 2

1

∫ 4

0
(x+ 2y)dxdy. [5 points]

(b) Let T be the triangle with vertices (0, 0), (0, 2), and (2, 2).

Evaluate
∫ ∫

T
y2exydA. (Hint: sketch the triangle and choose an appropriate order of

integration.) [9 points]
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10. A company has 4 locations L1, L2, L3, L4 and sells 8 of the same products X1, X2, . . . , X8

at each location. Let P = [Pi,j ] be the profit matrix where

Pi,j = the company’s profit (in $1, 000’s) when exactly one unit of product Xj is sold at
location Li.

(a) If the company’s profit from selling 7 units of product X2 at location L4 is $84, 000, what
is the value of the entry P4,2? [3 points]

(b) State the matrix Q such that A = QP where A = [A1,j] and A1,j is the company’s average
profit in dollars from selling exactly one unit of product Xj at all of the 4 locations of
the company. [4 points]

(c) State the matrices E and C so that the single entry in the matrix product EPCT is the
total profit in dollars from selling exactly j units of product Xj at all of the 4 locations
of the company. [3 + 3 points]

(d) State the matrices E and F such that the single entry in the matrix product EPF is the
sum of all entries in the matrix P . [4 points]
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