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Instructions: Put your solutions, answers, and rough work in the answer space provided.
Show all of your work. Full points are awarded only if your solutions/answers are correct, complete,
and sufficiently display appropriate, relevant concepts from MATA33S.

1. In all of this question let f(x, y) =
√
−4x2 − 2y + 16 .

(a) Let D represent the domain of the function f . State D using set-bracket notation
(i.e. D = { (x, y) | . . .}) and an appropriate inequality, and carefully sketch/shade D.

[6 points]

(b) Find the function y = h(x) that gives the level curve of f passing through (1, 4) and
sketch this function h on the axis you used in Part (a). [5 points]

(c) Evaluate the function
[(

fx(x, y) + fy(x, y)
)
f(x, y)

]2
at the point (−1, 0). [7 points]
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2. Use the method Lagrange Multipliers to find the critical point of the function

w = f(x, y, z) = x ln(x) + y ln(y) + z ln(z) subject to the constraint x+ y + z = 6.

You may assume the function f has a maximum or minimum at this critical point. Determine
which one of these is correct. [13 points]
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3. The parts of this question are independent of each other.

(a) Let z = 2x2y2 − 2x+ 4y where x = (r+ 3)
√
s and y = e(s−1)r3 . Use the Chain Rule

to evaluate
∂z

∂s
when s = 1 and r = −2. [7 points]

(b) Assume the function h(x, y) = ax2− by2− cxy+4x− y has a critical point at (1, 0) and
the second-derivative test is inconclusive at this point. Find a, b, and c. [7 points]
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4. Find all critical points for the function f(x, y, z) = x3 + xz2 − 3x2 + y2 + 2z2 and classify
each point as a relative maximum, relative minimum, or a saddle point. [16 points]
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5. In all of this question assume the equation 2z2 = x2 + 2xy + xz defines z implicitly as a
function of the independent variables x and y.

(a) Let x = −4 and y = 0 in the equation above and solve for z. [4 points]

(b) Calculate
∂ 2z

∂x∂y
. [8 points]

(c) Evaluate the mixed partial derivative you found in Part (b) at each of the points obtained
through Part (a). [4 points]
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6. In all of this question consider the system of three linear equations in the variables x, y, and
z, and real parameter t:

tx − y + z = 0

6x+ y − 2z = 2

t2x− 2y − z = 1

(a) Use a determinant to find all values of t such that the system above has a unique solution.

[6 points]

(b) Use Cramer’s rule to solve for x and y in the system above for the values of t you
determined in Part (a). Do not solve for z. [8 points]

7



7. The parts of this question are independent of each other.

(a) Let x, y > 0 be the unit prices of products X and Y , respectively.

Let P = e−(αx+βy) +
x

y
and Q = 8x−αy−β be the quantity (i.e. demand) functions for

X and Y , respectively. Here α and β are constants. Show that if α, β > 0, then X and
Y are complementary. [7 points]

(b) The following is an equation in mathematics of finance: rL = r +D
∂r

∂D
+

dC

dD
where r = the bank deposit rate, rL = the bank earning rate, C = administrative costs,

and D = bank deposit level. If σ =
(
r

D

)(
∂r

∂D

)−1

, show that rL = r
[
σ + 1

σ

]
+

dC

dD
.

[5 points]

(c) Make a good sketch of the surface y2 + z2 = 4 in R3. Clearly label your axes and
provide at least four labeled points on the surface. [4 points]
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8. Let R be the feasible region defined by the five inequalities:

x ≥ 0, y ≥ 0, 2x+ y ≤ 4, −x+ y ≤ 1, 2x+ 3y ≥ 12.

Let Z = 3x + 2y. Determine the maximum and minimum values of Z and where they occur
for the feasible region R, or determine that Z has no optimal values on R. Sufficiently justify
your answer. [10 points]
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9. (a) Economists have determined that a person’s status in Canadian society is given by the

function S(b, n) =
∫ b

0

∫ n

0

(
2x +

√
y
)
dxdy where b is their age in decades and n is

their annual income in units of $10, 000. Find the status of a person of age 40 with an
annual income of $90, 000. [7 points]

(b) Evaluate
∫ 2

0

∫ e2

ey

x2

lnx
dxdy . (Hint: sketch the region of integration) [8 points]
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10. A company has three locations L1 , L2 , L3 and sells five of the same products P1 , P2 , P3 , P4 , P5

at each location. Let R = [Ri,j ] be the revenue matrix where

Ri,j = the company’s revenue (in $100) from selling one unit of product Pj at location Li.

(a) If the company’s revenue from selling 8 units of P3 at location L2 is $3, 200, what is the
value of the entry R2,3? [3 points]

(b) State the matrix B so that A = RBT where A = [Ai,1] and Ai,1 is the company’s average
revenue in dollars from selling exactly one unit of each product at location i.

[4 points]

(c) State the matrices E and C so that the single entry in the matrix product ERCT is the
total revenue in 1000’s of dollars from selling exactly (j + 2) units of product Pj at each
location of the company. [3 + 3 points]

(d) Suppose the company has the following new projection for its sales: For each location,
the revenue of P1 increases by $40 per unit; the revenue for P3 decreases by 20% per
unit; and the revenue for P5 doubles per unit. The unit revenues for P2 and P4 do not
change at any location. State the matrix S so that S + R gives the new sales revenue
for all products and all locations. [5 points]

11



(This page is intentionally left blank)

12


