**** Sorry, no solutions will be posted ***

University of Toronto at Scarborough Department of Computer and Mathematical Sciences

FINAL EXAMINATION

MATA33 - Calculus for Management II

Examiners: R. Grinnell E. Moore

Signature: _

K. Sharp

Date: April 20, 2011 Time: 7:00 pm Duration: 3 hours

Provide the following information:

Last Name (PRINT):	
Given Name(s) (PRINT):	
Student Number (PRINT):	

Read these instructions:

- 1. This examination booklet has 14 numbered pages. It is your responsibility to ensure that at the beginning of the exam all of these pages are included.
- 2. Put your solutions and/or rough work in the answer spaces provided. If you need extra space, use the back of a page or the blank page at the end of the exam booklet.
- 3. You may use one standard hand-held calculator (a graphing facility is permitted). All other electronic devices (e.g. cell phone, smart phone, i-Pod), extra paper, notes, textbooks, and backpacks are forbidden at your workspace.
- 4. If you brought a cell phone into the exam room, it must be turned off and left at the front of the exam room.

Print letters for the Multiple Choice Questions in these boxes:

1	2	3	4	5	6	7	8	9

Do not write anything in the boxes below.

Α	1	2	3	4	5	6	7	8	9	TOTAL
36	11	14	12	12	14	11	14	12	14	150

Part A - Multiple Choice Questions For each of the following **print the letter of the answer you think is most correct in the boxes on the first page**. Each right answer earns 4 points and no answer/wrong answers earn 0 points. Justification is neither required nor rewarded, but a small workspace is provided for your calculations.

1. Let
$$A = \begin{bmatrix} 5 & 8 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 0 & 6 \end{bmatrix}$. The matrix $A^{-1} + B^T$ is
(A) $\begin{bmatrix} 7 & -8 \\ 1 & 11 \end{bmatrix}$ (B) $\begin{bmatrix} -1 & 8 \\ 5 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 8 \\ 5 & -1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 8 \\ 5 & 1 \end{bmatrix}$ (E) none of (A) - (D)

2. If
$$P = \begin{bmatrix} 4 & 8 \\ 1 & 3 \end{bmatrix}$$
 and Q is a 2 × 2 matrix such that $det(Q) = 2$ then $det(\frac{1}{2}P^2Q^{-1})$ equals
(A) 4 (B) 9/4 (C) 20 (D) 2 (E) 9/8 (F) a number not in (A) - (E)

- 3. Exactly how many of the following properties are mathematically equivalent to the following statement: "A 3×3 matrix K is invertible"?
 - KH = HK for some 3×3 matrix H.
 - $det(K) \neq 0$.
 - The reduced form of K is the 3×3 identity matrix.
 - The matrix equation KX = 0 has the trivial solution (0 is the 3×1 zero matrix).
 - *K* has neither a row of zeros nor a column of zeros.
 - (A) 0 (B) 1 (C) 2 (D) 3 (E) 4 (F) 5

4. A production function is $P(l,k) = l^{0.6}k^{0.4}$ where l is a measure of labour used and k is a measure of capital used. The marginal productivity with respect to labour when l = 20 and k = 6 is a number

$$(A) < 0.2$$
 (B) in [0.2, 0.3) (C) in [0.3, 0.4) (D) in [0.4, 0.5) (E) ≥ 0.5

- 5. The joint demand functions for two products X and Y are given by $a(x,y) = \frac{100}{x\sqrt{y}}$ and $b(x,y) = \frac{300}{y\sqrt[5]{x}}$ respectively, where x and y are the unit prices of X and Y, respectively. We may conclude that the products are
 - (A) competitive (B) complementary (C) neither (A) nor (B) (D) both (A) and (B)

- 6. Let c(x, y) be a cost function for the products X and Y as in Question 5 above. Assume c(20, 13) = 853, $c_x(20, 13) = -2$, $c_x(21, 12) = 1$, and $c_y(20, 12) = -3$. The value of c(20, 12) is approximately
 - (A) 856 (B) 855 (C) 851 (D) 850 (E) a number not in (A) (D)

- 7. Assume a function w = f(x, y, z) has continuous second-order partial derivatives at all points (x, y, z) and that (a, b, c) is a critical point of f where a < c < 0 and b > 1. Assume the Hessian matrix (i.e. the matrix of second partial derivatives) is $A = Hf(a, b, c) = \begin{bmatrix} ab & a & 0 \\ a & a & 0 \\ 0 & 0 & c \end{bmatrix}$. We may conclude that
 - (A) f has a relative minimum at (a, b, c)
- (B) f has a relative maximum at (a, b, c)
- (C) f has no relative extrema at (a, b, c)
- (E) none of (A) (D) are correct
- (D) the second derivative is inconclusive

8. The value of $\int_0^1 \int_1^3 xy^2 \, dy \, dx$ is (A) 13/3 (B) 5/3 (C) 4/3 (D) 13/2 (E) 13/9 (F) none of (A) - (E)

- 9. Exactly how many of the following mathematical statements are always true?
 - A function f(x, y) has a relative extrema at a point (a, b) if and only if (a, b) is a critical point of f.
 - If g(x, y) is continuous on a region R in the plane, then $\int \int_{R} g(x, y) \, dA$ represents a volume.
 - If f(x, y) has relative minimum at a point (a, b) and (a, b) satisfies a constraint g(x, y) = c, then (a, b, λ) is a critical point of the Lagrangian for f and g.

• If h(x, y) is a function for which all second-order partial derivatives are continuous at every point (x, y), then the second-order partial derivatives are equal.

(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

(Check that you have printed the correct letter answers in first page boxes)

Part B - Full Solution Questions Full points are awarded only if your solutions are correct, complete, and sufficiently display relevant concepts from MATA33.

1. Let $f(x,y) = 2x^2 + y^2 - x^2y$. Find the critical point(s) of f. For each one, use the second derivative test to determine whether it corresponds to a relative maximum, minimum, or a saddle point. [11 points]

2. (a) Let $u = \frac{3x^2 + 4}{y + 1}$ where $x = re^{7s}$ and $y = 1 + r(s + 2)^2$. Use the chain rule for functions of two variables to calculate the value of $\frac{\partial u}{\partial s}$ when r = 2 and s = 0. [8 points]

(b) Assume the equation $z^3 + x^2 z = 4x + yz$ defines z implicitly as a function of independent variables x and y. Find z_x at the point where y = -3 and z = 1.

[6 points]

3. In all of this question let \mathcal{R} represent the feasible region in the plane whose corner points are A = (-1, -1), B = (0, 3), C = (2, 3), D = (5, 1), and E = (0, -2).

Let Z = F(x, y) = 2rx + 3ry be an objective function where r < 0 is an arbitrary constant.

(a) Maximize and minimize the objective function F on \mathcal{R} . State the maximum and minimum values and state all points where these values occur. Include a sketch of \mathcal{R} .

[8 points]

(b) Let S be the feasible region obtained from \mathcal{R} by removing the line segment DE from \mathcal{R} . Show that the objective function F has no maximum value on S. [4 points] 4. A company sells two products, A and B. The revenue function (in dollars per week) is $R(x,y) = -\frac{1}{4}x^2 - \frac{3}{8}y^2 - \frac{1}{4}xy + 300x + 240y$ where x and y are the number of units of A and B sold per week, respectively. The associated cost function is C(x,y) = 180x + 140y + 5000 dollars per week. Find the value(s) of x and y that maximize the weekly profit. Do verify that your findings actually give maximum profit. (Recall that Profit = Revenue - Cost).

[12 points]

- 5. Imagine a few years after graduation from UTSC that you are employed as the senior buyer for a specialty European car dealership in Toronto. Your dealership sells two models of a certain luxury car: the sport model (which costs the dealership c to buy) and the touring sedan (which costs the dealership d to buy). It is the case that d > c. You have a dealership budget of B to buy a sum total of k of these cars. Assume all of the budget is used and that you buy x > 0 sport models and y > 0 touring sedans.
 - (a) State the system of two linear equations in the letters x, y, c, d, k, and B that describe the "buying situation" outlined above. [2 points]

(b) Use Cramer's rule to solve for x and y in terms of the other four constants. [6 points]

(c) Use your answer to part (b) to show that $c < \frac{B}{k} < d.$ [3 points]

(d) Assuming the inequality in part (c) is true, give a short reason why the values of x and y in part (b) may not actually be meaningful in the context of the "buying situation" outlined above. [3 points]

- 6. In all of this question let $f(x,y) = \frac{\sqrt{y-x^2+4}}{\sqrt{5-y}}$
 - (a) Let D represent the domain of f. State D using set-notation and appropriate inequalities and then give a good sketch that clearly shows D. [6 points]

(b) Find the function y = g(x) that gives the level curve of f passing through the point (2, 4). [5 points]

- 7. In all of this question let $C(x,y) = \frac{xy}{2x+5y}$ be the total manufacturing cost (in millions of dollars) for x > 0 hundreds of units of product A and y > 0 hundreds of units of product B.
 - (a) Find and simplify the marginal cost functions $C_x(x,y)$ and $C_y(x,y)$. [8 points]

(b) Find the number of units of products A and B manufactured under the following two assumptions: (i) the sum total of units manufactured is 2,000 and (ii) the marginal cost functions are equal. Round your answers down the nearest unit. [6 points]

8. The Cobb-Douglas production function for a company is given by $P = f(x, y) = 500x^{2/5}y^{3/5}$ where x > 0 is the units of labour (at \$100 per unit) and y > 0 is the units of capital (at \$250 per unit). The total budget for labour and capital is \$100 thousand and this is all used. Use the method of Lagrange multipliers to find x and y that yields the maximum production and state this maximum value (You may assume that such a maximum actually exists).

[12 points]

9. (a) Find $\int \int_R x + y \, dA$ where R is the triangular region with vertices (0,0), (2,2), and (4,0). [7 points]

(b) Evaluate $\int_0^1 \int_{\sqrt{x}}^1 \sqrt{4+y^3} \, dy \, dx$. (Hint: consider reversing the order of integration).

[7 points]

(This page is intentionally left blank)