University of Toronto at Scarborough
 Department of Computer \& Mathematical Sciences

MATA33S

Assignment 9 (2 Pages)

Winter 2018

Study: Section 17.6 and the home page pdf document entitled "Hessian Optimization". Read ahead in Sections 17.7 and 17.9. We omit Section 17.8. Also see the Notes below.

Problems: (Many and challenging \odot)

1. Section 17.6, Pages $775-777 \# 1-3,6-8,10-14,16,18-20,22,23,24,28,29,33$, 34, 36.
2. A delivery company accepts only rectangular boxes who length plus "girth" do not sum over 108 cm (The "girth" of a rectangular box is the perimeter of a cross-section). Find the dimensions of an acceptable box of largest volume.
3. In this question let $f(x, y)=x^{2}-y^{2}-2 x+4 y+6$
(a) Use the critical point concepts and the second derivative test to find out that f has a critical point at $(1,2)$ but no relative extrema there.
(b) Prove algebraically (i.e. not using calculus) that f has no relative extrema at $(1,2)$.
4. (a) Show that the critical point analysis and second derivative test provide no information about extrema of the function $f(x, y)=x^{4}+y^{4}$
(b) Use algebra (and no calculus) to find the local extrema of f in part (a). Prove also that the local extrema you find in part (a) is actually absolute extrema.
5. (a) Repeat part (a) in Problem 4 for the function $f(x, y)=x^{4}-y^{4}$
(b) Use algebra (and no calculus) to show that f has no local extrema at the point $(0,0)$.
6. In this question let $f(x, y)=x^{2}-e^{\left(y^{2}-1\right)}$
(a) Find all of the critical points of the function f
(b) Find all of the critical points of the function $g(x)=f(x, x)$
(c) What is surprising in your result for (b) compared to that of (a)?
7. A rectangular box with no top is constructed from exactly $12 m^{2}$ of material (i.e. there is no waste).
(a) With the length, width, and height represented by positive numbers x, y, and z respectively, show that the volume, V, of the box subject to the material constraint above is given by $V=\frac{x y(12-x y)}{2 x+2 y}$.
(b) Verify that if $V_{x}(x, y)=V_{y}(x, y)=0$ then $x=y$.
(c) Re-read the paragraph entitled, "Applications" on page 773 and convince yourself that there is a maximum volume of the box. Under this assumption, verify that the maximum volume is $4 m^{3}$. (Note: the idea here is to not use the second-derivative test. That test would be quite complicated because of the second derivatives)
(d) Use (b) to write V as a function of x only and then use optimization methods from MATA32 to prove that the maximum value of the volume is $4 \mathrm{~m}^{3}$.
8. Page 795, \# 25, 26
9. For each of the following functions of three variables, find the critical point(s). Then for each critical point, use the second derivative test to determine whether it yields a local (i.e. relative) maximum, minimum, or neither.
(a) $f(x, y, z)=x^{3}+x y^{2}+x^{2}+y^{2}+3 z^{2}$
(b) $f(x, y, z)=x^{3}+x z^{2}-3 x^{2}+y^{2}+2 z^{2}$
(c) $f(x, y, z)=x^{2} y+y^{2} z+z^{2}-2 x$
(d) $f(x, y, z)=x y-x z$

Notes:

1. Quiz 5 is in Week 11 (Friday March 23 - Thursday March 29). It will not have any problems/questions from this Assignment 9. See Assignment 8 for further details as to the material of responsibility for Quiz 5 .
2. There will be two more posted assignmnents/solutions after this one: Assignments 10 and 11.
3. Midterm test Solutions and some statistics will be posted at our home page in the week of March 19-23.
4. Please consider doing the Sociology survey. A link to that survey was emailed to students on Monday March 12, 2018 around 8:15pm. A 1% bonus will be added to your final grade upon completion of the survey.
