University of Toronto at Scarborough
 Department of Computer \& Mathematical Sciences

MATA33S

Assignment 7

Winter 2018
Tutorial Quiz 4 takes place in Week 9 (Friday March 9 - Thursday March 15). You are responsible for Assignments/Solutions 6 (regular and enhanced; Sections 2.8 and 17.1) and Assignment/Solutions 7, Section 17.2 only (i.e. Problem Questions 1 and 3-6 below). There will not be any questions from Section 17.3 on Quiz 4 (i.e. Problem Questions 2 below are not on Quiz 4). It is also assumed you know MATA32 very well.
Study: Sections 17.2 and 17.3 for this assignment (reviewing sections 2.8 and 17.1 would be useful too). Read ahead in Sections 17.4 and 17.5.
Terminology and Concepts to Learn: (In Section 17.2) partial derivatives as rates of change, partial derivatives and marginal quantities, competitive and complementary products (In Section 17.3) implicit partial differentiation

Problems:

1. Section 17.2, Pages $758-760 \# 1,2,4-10,14,18-20$.
2. Section 17.3, Page $762 \# 1,2,5,6,10,11,13,14,16,19$.
3. Find the equation of the horizontal plane that is tangent to the graph of the function $z=G(x, y)=x^{2}-4 x y-2 y^{2}+12 x-12 y-1$.
4. Let $P(x, y)=\frac{x y}{a x+b y}$ where P represents profit; $x, y>0$ represent sales of products \mathbf{X} and \mathbf{Y} (respectively); and $a, b>0$ are constants. Show that the sum of the marginal profits when $x=y$ is equal to $\frac{1}{a+b}$
5. Throughout this problem use the function in $\# 20$ on page 795
(a) Do problem \# 20 on page 795
(b) Verify the concept of marginal as outlined on page 795. That is, verify that $c_{x}(50,100) \approx$ $c(51,100)-c(50,100)$ and $c_{y}(50,100) \approx c(50,101)-c(50,100)$.
(c) Repeat part (b) where you replace 50 with a constant $a>0$ and 100 with a constant $b>0$.
6. In this problem, it may be useful to refer to the formulas concerning a cylinder in problem $\# 25$ on page 618.
(a) Assume we have a cylinder (with a top) of height h and base radius r. If the top, bottom, and wall costs per square metre are a, b, and w dollars respectively, find the cost function $K(h, r, a, b, w)$ that give the total material cost as a function of h, r, a, b, and w.
(b) Find all five partial derivatives of the function K.
(c) Assume now that $a=w=1$ and $b=2$. Write the function $K(h, r, 1,2,1)$.
(d) Consider the level curve $L(\pi)$ for the function you found in part (c). Find a mathematical relationship for h as a function of r (where $h, r>0$) that describes the points (h, r) on the level curve $L(\pi)$. What inequality must r satisfy so that $h>0$?
