University of Toronto Scarborough Department of Computer \& Mathematical Sciences

Midterm Test
MATA32H - Calculus for Management I

Examiner: E. Moore

Date: March 3, 2018
Start time: 9:00am
Duration: 110 minutes

1. [5 points] You have just won a lottery and you are given two payment options:
2. $\$ 850,000$ now
or 2. 10 annual payments of $\$ 100,000$, with the first payment now.
If the effective interest rate is 4%, determine which is the better option.

2. [13 points]

(a) Find the following limits, if they exist, You may use the symbols ∞ or $-\infty$ when needed. Always provide justification when appropriate. (The use of l'Hôpital's Rule will earn no credit.)
i. $\lim _{x \rightarrow 0} \frac{\sqrt[5]{1+3 x}-1}{x}$.
ii. $\lim _{s \rightarrow 2} \frac{s^{2}+s-6}{s^{3}-6 s^{2}+8 s}$.
(b) Let $f(x)=\left\{\begin{array}{cl}\frac{1-x^{3}}{1-\sqrt{x}} & , \text { for } x \neq 1 \\ 6 & , \text { for } x=1\end{array}\right.$.

Determine if $f(x)$ is continuous at $x=1$.
3. [12 points] Let $f(x)=\frac{8 x}{1-3 x}$.
(a) Find the point(s) on the graph of $y=f(x)$ where the tangent line is parallel to the line $y=2 x-7$.
(b) Use the definition of derivative ("first principles") to find $f^{\prime}(x)$.
4. [10 points]
(a) Let $f(u)=u^{3}-3 u^{2}+2 u+1$ where $u=u(x)=2 x^{2}+e^{x-1}$. Use the Chain rule to find the value of $\frac{d f}{d x}$ when $x=1$.
(b) Find $f^{\prime}(x)$, in fully factored form, when $f(x)=\left(x^{2}+2 x-1\right)^{3}\left(5 x^{3}+1\right)^{2}$.
5. [10 points] Let $y=f(x)$ be defined implicitly by the expression

$$
y^{3}+x y^{2}+x y+x^{2}=4
$$

(a) Find the equation of the tangent line at $(1,1)$.
(b) Determine where the tangent line from part (a) crosses the x-axis or show that they do not meet.
6. [10 points] Let $f(x)=3 x^{4}+8 x^{3}-6 x^{2}-24 x$.
(a) Find the critical points of $y=f(x)$.
(Hint: Is $x+2$ a factor of $f^{\prime}(x)$?)
(b) Determine the intervals of increase and decrease and find relative extrema.
(A sign chart is required.)
(c) Find any absolute extrema that may exist.
7. [8 points] Suppose that a country's consumption function is given by

$$
C=\frac{10 \sqrt{I}+0.7 \sqrt{I^{3}}-0.2 I}{\sqrt{I}}
$$

where C and I are expressed in billions of dollars.
(a) Find the marginal propensity to save when income is $\$ 25$ billion.
(b) Determine the relative rate of change of C with respect to I when income is $\$ 25$ billion.
8. [7 points] You are thinking about a trip after graduation so you just opened a new savings account and made a $\$ 500$ deposit. Over the next 5 months you add $\$ 50$ at the end of each month. Starting in month 6, you are able to add $\$ 100$ at the end of each month for the next 3 years.
If interest is at a nominal rate of 3%, compounded monthly, how much will be in the account after the final deposit? Please round your answer to the nearest dollar.
9. [15 ponts] A total debt of $\$ 7500$ due in 2 years and $\$ 2500$ due in 6 years is to be repaid in the following way:
An initial payment now and 3 subsequent annual payments in 3 years, 4 years and 5 years, with each payment being $\$ 500$ more than the previous payment.
Interest is at a nominal rate of 4.8% compounded monthly. Find the amount of each payment rounded up to the nearest dollar.
(A complete answer requires a money-time line and an equation of value.)
10. [15 ponts] Let $q>0$ be the number of units and let $p=p(q)=\frac{450}{q+3}$ be the demand function.
(a) Find the marginal revenue when $q=9$.
(b) Let $c=c(q)$ be the cost function. If the marginal cost of 9 units is 5 and the average cost of 9 units is 15 , estimate the profit when 10 units are sold.
(c) Determine those $q(q>0)$ for which the demand is elastic.

